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a b s t r a c t

Phase equilibrium modeling plays an important role in design, optimization and control of separation
processes. The global optimization problem involved in phase equilibrium calculations is very challenging
due to the high non-linearity of thermodynamic models especially for multi-component systems subject
to chemical reactions. To date, a few attempts have been made in the application of stochastic meth-
ods for reactive phase equilibrium calculations compared to those reported for non-reactive systems.
In particular, the population-based stochastic methods are known for their good exploration abilities
and, when optimal balance between the exploration and exploitation is found, they can be reliable and
efficient global optimizers. Genetic algorithms (GAs) and differential evolution with tabu list (DETL) have
been very successful for performing phase equilibrium calculations in non-reactive systems. However,
there are no previous studies on the performance of both these strategies to solve the Gibbs free energy
minimization problem for systems subject to chemical equilibrium. In this study, the constrained and
unconstrained Gibbs free energy minimization in reactive systems have been analyzed and used to assess
the performance of GA and DETL. Specifically, the numerical performance of these stochastic methods
have been tested using both conventional and transformed composition variables as the decision vector
for free energy minimization in reactive systems, and their relative strengths are discussed. The results of
these strategies are compared with those obtained using SA, which has shown competitive performance
in reactive phase equilibrium calculations. To the best of our knowledge, there are no studies in the liter-
ature on the comparison of reactive phase equilibrium using both the formulations with stochastic global
optimization methods. Our results show that the effectiveness of the stochastic methods tested depends
on the stopping criterion, the type of decision variables, and the use of local optimization for intensifi-
cation stage. Overall, unconstrained Gibbs free energy minimization involving transformed composition
variables requires more computational time compared to constrained minimization, and DETL has better
performance for both constrained and unconstrained Gibbs free energy minimization in reactive systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The accurate modeling of phase equilibrium plays a major role
in the design, development, operation, optimization and control
of chemical processes. For example, phase behavior has signif-
icant impact on equipment and energy costs of separation and
purification processes in chemical industry. Further, solving phase
equilibrium problems is a dominant task in the process simulation
software. The development of reliable methods has long been a
challenge and is still a research topic of continual interest [1]. The
determination of the number of phases, their identity, and composi-
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tion at equilibrium of multi-component systems is a complex issue
and presents several numerical difficulties [1]. Chemical reactions,
if present, increase the complexity and dimensionality of phase
equilibrium problems, and so phase split calculations in reactive
systems are more challenging due to non-linear interactions among
phases and reactions [2]. This fact has prompted growing interest
in reliable and efficient methods for the simultaneous computation
of physical and chemical equilibrium.

The phase distribution and composition at equilibrium of a reac-
tive mixture are determined by the global minimization of Gibbs
free energy (G) subject to mass balance and chemical equilibrium
constraints [3]. Specifically, the global optimization problem for
reactive phase equilibrium calculations follows the form: mini-
mize Fobj(u) subject to hj(u) = 0 for j = 1, 2, . . ., m and u ∈ ˝ where
u is a vector of continuous variables in the domain ˝ ∈ �n, m is

0378-3812/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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the number of equality constraints related to material balances
and chemical equilibrium, and Fobj(u) = G: ˝ ⇒ � is a real-valued
function. The domain ˝ is defined by the upper and lower lim-
its of each decision variable, which are composition variables.
This optimization problem can be formulated using either conven-
tional composition variables (i.e., mole fractions or numbers), or
transformed composition variables [3–5]. Based on the problem
formulation and the numerical strategy used for this minimization,
the methods can be grouped into two main categories: equation-
solving methods and direct optimization strategies. In addition,
depending on the handling of material balance constraints, these
strategies can also be classified as either stoichiometric or non-
stoichiometric [3,6].

In general, classical strategies for determining the phase equi-
librium of non-reactive systems have been extended and applied to
systems subject to chemical reactions [3]. Equation-solving meth-
ods are based on the solution of non-linear equations obtained from
the stationary conditions of the optimization criterion. Local search
methods with and without decoupling strategies are frequently
used to solve these equations in conjunction with the mass bal-
ance and chemical equilibrium restrictions [7]. However, they are
prone to severe computational difficulties and may fail to converge
to the correct solution when initial estimates are not suitable, espe-
cially for non-ideal multi-component and multi-reactive systems
[1,3,6]. Note that the minimization of G in reactive systems involves
many complexities because it is generally non-convex, constrained,
highly non-linear with many decision variables, and often has unfa-
vorable attributes such as discontinuity and non-differentiability
(e.g., when cubic equations of state or asymmetric models are used
for modeling thermodynamic properties). Additional complexities
arise near the phase boundaries, in the vicinity of critical points
or saturation conditions, and when the same model is used for
determining the thermodynamic properties of the mixture [1,3].
As consequence, G may have several local minima including triv-
ial and non-physical solutions. In these conditions, conventional
numerical methods are not suitable for performing reactive phase
equilibrium calculations.

On the other hand, a number of optimization strategies for
performing the minimization of G in reactive systems have
been proposed, and they comprise local and global methods
(e.g., [2,3,5,6,8–23]). The use of Lagrange multipliers is usually
the preferred approach for G minimization but its performance
is highly dependent on initial estimates of Lagrange multipli-
ers [17]. There has been significant and increasing interest in
the development of deterministic and stochastic global strate-
gies for reliably solving reactive phase equilibrium problems.
Studies on deterministic reactive phase equilibrium calculations
have been focused on the application of the linear programming
[9,21], branch and bound global optimization [11], homotopy
continuation methods [13,15,20], and interval analysis using an
interval-Newton/generalized bisection algorithm [16]. Although
these methods have proven to be promising, some of them are
model-dependent, may require problem reformulation or signif-
icant computational time for multi-component systems [1,24].

Alternatively, stochastic optimization techniques have often
been found to be as reliable and effective as deterministic methods.
Further, they offer more advantages for the global optimization of
G. These methods are robust, require a reasonable computational
effort for the optimization of multivariable functions (generally less
time than deterministic approaches), applicable to ill-structure or
unknown structure problems, require only objective function cal-
culations and can be used with all thermodynamic models. In fact,
it appears that they may fulfill the requirements of an ideal algo-
rithm: reliability, generality and efficiency. To date, a few attempts
have been made in the application of stochastic methods for reac-
tive phase equilibrium calculations, compared to those reported

for non-reactive systems [14,19,22,23,25]. Specifically, Lee et al.
[14] introduced the application of the random search method of
Luus and Jaakola for the global minimization of G using a non-
stoichiometric formulation. On the other hand, Bonilla-Petriciolet
et al. [19] formulated the unconstrained optimization problem for
G minimization using simulated annealing (SA) and transformed
composition variables. In another study, particle swarm optimiza-
tion (PSO) and several of its variants have been applied for reactive
phase equilibrium calculations using transformed composition
variables [22]. Recently, our group [23] has tested and compared the
performance of differential evolution (DE) and tabu search (TS) for
the global minimization of G using reaction-invariant composition
variables. Finally, Reynolds et al. [25] outlined a general proce-
dure for the global optimization of G in reactive systems using SA
and a non-stoichiometric approach. Results of these studies have
shown the potential of stochastic optimization solvers for phase
equilibrium calculations subject to chemical reactions.

In particular, the population-based stochastic methods are
known for their good exploration abilities; when optimal bal-
ance between the exploration and exploitation is found, they
can be reliable and efficient global optimizers. This is because at
each generation/iteration a whole population of potential solu-
tions is improved rather than a single solution. A variety of
population-based stochastic methods have been proposed for
chemical engineering applications including the modeling of phase
equilibrium, e.g. [26–29]. Specifically, genetic algorithms (GAs) and
differential evolution with tabu list (DETL) have been very success-
ful for performing phase equilibrium calculations in non-reactive
systems [26,28]. However, to the best of our knowledge, there
are no studies on the performance of both these strategies for G
minimization in systems subject to chemical equilibrium. These
methods are suitable and promising for overcoming the numerical
difficulties of this global optimization problem.

In this study, the constrained and unconstrained Gibbs free
energy minimization in reactive systems have been analyzed and
used to assess the performance of GA and DETL. Specifically, the
numerical performance of these stochastic methods have been
tested using both conventional and transformed composition vari-
ables as the decision vector for G minimization, and their relative
strengths are discussed. The results of GA and DETL are compared
with those obtained using SA, which has shown a competitive
performance in reactive phase equilibrium calculations [19]. Our
results on a variety of reactive systems indicate that DETL is supe-
rior to SA and GA for both the constrained and unconstrained Gibbs
free energy minimization in reactive systems.

2. Formulation of the Gibbs free energy minimization in
reactive systems

2.1. Gibbs free energy function

Classical thermodynamics indicates that, at constant tempera-
ture T and pressure P, the equilibrium for a c multi-component and
� multi-phase system is achieved when the G function is at the
global minimum [1]. This thermodynamic function is expressed as
a linear combination of the chemical potential of each component
in each phase, then

G =
�∑

j=1

c∑
i=1

nij�ij (1)

where nij is the number of moles of component i present in phase j
and �ij is the chemical potential of component i in phase j, respec-
tively.

For reactive phase equilibrium, the mass balance restrictions
and non-negativity requirements are usually formulated using the
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conservation of chemical elements in the components [3,14]

c∑
i=1

�∑
j=1

dlinij = bl l = 1, . . . , me (2)

where dli represents the number of gram-atoms of element l in
component i, bl is the total number of gram-atoms of element l in
the system, and me is the number of elements, respectively. So, the
bounds on nij are given by

0 ≤ dlinij ≤ bl i = 1, . . . , c; j = 1, . . . , �; l = 1, . . . , me (3)

Therefore, to determine the phase equilibrium compositions in
reactive systems, it is necessary to find the global minimum of
Eq. (1) with respect to nij subject to constraints given by Eq. (2)
and in the region bounded by Eq. (3). The expressions for G and
its mathematical properties depend completely on the structure of
the thermodynamic equation(s) chosen to model each of the phases
that may exist at equilibrium [26].

Alternatively, the G function in reactive systems can be
expressed in terms of transformed composition variables that have
been introduced by different research groups [4,5] to provide a
simpler framework for treating reactive systems. As stated by Ung
and Doherty [4], mole numbers are not the natural composition
variables to use in the modeling of reactive systems because they
do not have the same dimensionality as the number of degrees
of freedom (i.e., they are inconsistent with respect to the Gibbs
phase rule). Therefore, in this study, we have applied the reaction-
invariant composition variables proposed by Ung and Doherty [4].
These variables are based on the transformation of physical compo-
sitions, restrict the solution space to the compositions that satisfy
stoichiometry requirements, and also reduce the dimension of the
composition space by the number of independent reactions satis-
fying the Gibbs phase rule. These features allow all the procedures
and algorithms used to model non-reactive mixtures to be easily
modified and extended to systems subject to chemical reactions
[4].

For a system of c components that undergo r independent chem-
ical reactions, the transformed mole numbers n̂i are defined by
selecting r reference components

n̂i = ni − viN
−1nref for i = 1, . . . , c − r (4)

where ni is the number of moles of component i, vi is the row vector
(of dimension r) of stoichiometric coefficients of component i in r
reactions, N is an invertible, square matrix formed from the sto-
ichiometric coefficients of r reference components in r reactions,
and nref is a column vector (of dimension r) of moles of each of the
reference components. The transformed mole fractions Xi are given
by

Xi = n̂i

n̂T
= xi − viN

−1xref

1 − vTOT N−1xref

for i = 1, . . . , c − r (5)

where xi is the mole fraction of component i, xref is a column vector
of mole fractions of r reference components, n̂T =

∑c−r
i=1 n̂i, and vTOT

is a row vector (of dimension r) where each element corresponds
to the sum of stoichiometric coefficients of all components in each
of the r reactions.

The transformed mole fractions (X) in reactive systems are sim-
ilar to the mole fractions (x) in non-reactive mixtures, and the sum
of all transformed mole fractions is equal to unity (i.e.,

∑c−r
i=1Xi = 1),

but a transformed mole fraction can be negative or positive depend-
ing on the reference components, number and type of reactions.
It is important to note that the set of X and n̂ has the desirable
property of taking the same numerical values before and after the
reactions. This is in contrast to conventional mole variables x and

n, which have different values for the components in the unmixed
and mixed (i.e., reacting) states [4].

The transformed variables X are related to x via the reaction
equilibrium constants Keq,k:

Keq,k =
c∏

i=1

avik
i k = 1, . . . , r (6)

where vik is the stoichiometric coefficient of component i in reaction
k, and ai is the activity of component i. To evaluate thermody-
namic properties in reactive systems using this approach, mole
fractions are obtained from the transformation procedure X → x
using Eqs. (5) and (6), which requires solution of one or more non-
linear equations. The resulting mole fraction values (x) satisfy the
stoichiometry requirements and are chemically equilibrated [4]. In
our study, bisection method is used to perform the composition
transformation. Note that multiple solutions are not possible for
xref during variable transformation X → x because only one solution
set of x simultaneously satisfies the chemical equilibrium equa-
tions and corresponds to the specified values of the transformed
composition variables [4]. For more details on this transformation
procedure, see our recent work [23].

For a reactive mixture, minimizing the Gibbs free energy with
respect to nij is equivalent to minimizing the transformed Gibbs
free energy (Ĝ) with respect to n̂ij [4]. For a multi-phase reactive
system, Ĝ is defined as

Ĝ =
�∑

j=1

c−r∑
i=1

n̂ij�ij (7)

where n̂ij is the transformed mole numbers of component i in phase
j. In transformed composition space, the material balances are given
by

�∑
j = 1

n̂ij = Zin̂F i = 1, . . . , c − r (8)

0 ≤ n̂ij ≤ Zin̂F i = 1, . . . , c − r; j = 1, . . . , � (9)

where n̂F is the total amount of transformed moles in the feed, and
Zi is the corresponding transformed mole fraction of component i.
So, the transformed phase compositions at equilibrium are deter-
mined by the global minimization of Eq. (7) subject to constraints
imposed by Eq. (8) in the feasible region defined by Eq. (9). Note
that this formulation requires the transformation procedure X → x
for evaluating the objective function value.

The global minimization of G and Ĝ is difficult and requires
robust numerical methods since these functions are multivari-
able, non-convex and highly non-linear. In this study, two different
optimization approaches (i.e., constrained and unconstrained),
using the conventional and transformed composition variables, are
adopted for global optimization of Gibbs free energy. To the best of
our knowledge, there are no studies in the literature on the compar-
ison and modeling of phase equilibrium in reactive systems using
both formulations with either deterministic or stochastic global
optimization methods. In the following section, formulations for
both constrained and unconstrained optimization problems are
described.

2.2. Constrained minimization approach

For modeling reactive systems, the chemical equilibrium con-
dition can be evaluated from either Gibbs free-energy data or
chemical equilibrium constants determined experimentally [30].
In such cases, we can use different objective functions for the con-
strained minimization of Gibbs energy function. In practice, Gibbs
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free-energy data are not available at tested conditions and the use of
chemical equilibrium constants obtained from experimental mea-
surements is more convenient. Based on this and to perform a direct
comparison of results obtained employing both conventional and
transformed variables as the decision vector, we have used a G func-
tion defined in terms of chemical equilibrium constants (Keq,k). This
objective function is derived from the relationship between G and
Ĝ [31]. However, in our analysis, Gibbs free energy of mixing is used
to avoid the calculation of pure component free energies, which do
not influence the equilibrium and stability results [4].

For a multi-phase and multi-component reactive system, the
transformed Gibbs free energy of mixing is defined as [4,15,31]

�ĝ =
�∑

j=1

c−r∑
i=1

n̂ij ln(xij�ij) (10)

where � ij and xij are respectively the activity coefficient and mole
fraction of component i in phase j. Using the definition of trans-
formed composition variables (Eq. (4)), �ĝ can be written as [31]:

�ĝ =
�∑

j=1

c−r∑
i=1

(nij − viN
−1nref,j) ln(xij�ij)

=
�∑

j=1

[
c∑

i=1

nij ln(xij�ij) −
c∑

i=1

viN
−1nref,j ln(xij�ij)

−
c∑

i=c−r+1

(nij − viN
−1nref,j) ln(xij�ij)

]
(11)

Define an unit, row vector ei = (0, . . ., 1, . . ., 0) of length r with all
elements zeros except one in the ith position. For all components
selected as reference for the transformed composition variables,
the vector vi can be calculated as follows

vi = eiN i = c − r + 1, . . . , c (12)

This expression is applied to the matrix product

viN
−1nref,j=eiNN−1nref,j=nij i = c − r + 1, . . . , c; j = 1, . . . , �

(13)

This result gives
c∑

i=c−r+1

[(nij − viN
−1nref,j) ln(xij�ij)] = 0 j = 1, . . . , � (14)

Since ln(� ijxij) is a scalar quantity, we have

c∑
i=1

viN
−1nref,j ln(xij�ij) =

c∑
i=1

vi ln(xij�ij)N
−1nref,j

=
[

c∑
i=1

vi ln(xij�ij)

]
N−1nref,j (15)

Recall that vi is the row vector (of dimension r) of stoichiometric
coefficients of component i in r reactions. So, element k of the row
vector

∑c
i=1vi ln(xij�ij) can be re-written as

c∑
i=1

vik ln(xij�ij)=
c∑

i=1

ln(xij�ij)
vik =ln

(
c∏

i=1

(xij�ij)
vik

)
=ln Keq,k (16)

Substituting Eq. (16) into Eq. (15), yields
c∑

i=1

viN
−1nref,j ln(xij�ij) = ln KeqN−1nref,j (17)

where ln Keq is a row vector of logarithms of chemical equilibrium
constants for all r independent chemical reactions. Then, �ĝ (Eqs.
(10) and (11)) becomes

FG = �ĝ = �g −
�∑

j=1

ln KeqN−1nref,j (18)

where �g =
�∑

j=1

c∑
i=1

nij ln(xij�ij) is the Gibbs free energy of mixing.

Eq. (18) is an alternative objective function involving reaction
equilibrium constants, for performing phase equilibrium calcula-
tions in reactive systems. This objective function must be globally
minimized subject to mass balance restrictions. In this context,
mass balance equations can be rearranged to reduce the num-
ber of decision variables of the optimization problem [14] and to
eliminate equality constraints which are challenging for stochastic
algorithms. The change in the number of moles of each reacting
component, while the set of reactions is proceeding, is given by∑�

j=1nij = niF + viε for i = 1, . . ., c where ni,F is the initial moles of
component i in the feed and ε is the vector of the r extents of reac-
tions for each of the r reactions. Under these conditions, a set of r
reference components can be chosen to find the r extents of reaction
in the following way [4]:

ε = N−1(nref − nref,F ) (19)

Recall that N is an invertible, square matrix formed from the
stoichiometric coefficients of the reference components in the r
reactions, and nref is a column vector of moles of each of the refer-
ence components. Therefore, we can establish that

�∑
j=1

(nij − viN
−1nref,j) = niF − viN

−1nref,F i = 1, . . . , c − r (20)

Thus, the mass balance restrictions can be used as follows to
reduce the number of decision variables.

ni� = niF − viN
−1(nref,F − nref,�) −

�−1∑
j=1

(nij − viN
−1nref,j)

i = 1, . . . , c − r (21)

Using Eq. (21), the decision variables are c(� − 1) + r mole num-
bers (nij). Then, the global optimization problem can be solved by
minimizing FG with respect to c(� − 1) + r decision variables nij and
the remaining c − r mole numbers (ni�) are determined from Eq.
(21) and subject to the inequality constraints ni� > 0. Note that the
bounds on decision variables are given by Eq. (3).

The global minimization of FG is a constrained optimization
problem. The search space in constrained optimization problems
consists of both feasible and infeasible points. In reactive phase
equilibrium calculations, feasible points satisfy all the mass balance
constraints, Eq. (21) and bounds, Eq. (3), while infeasible points
violate at least one of them (i.e., ni� < 0 where i = 1, . . ., c − r). In
this study, the penalty function approach [32,33] is used to solve
the constrained Gibbs free energy minimization in reactive sys-
tems. It is one of the popular techniques for handling constraints
in the stochastic methods. This method is easy to implement and
is considered efficient. It transforms the constrained problem into
an unconstrained problem by penalizing infeasible solutions. In our
calculations, an absolute value of constraint violation is multiplied
with a high penalty weight and then added to the corresponding
Gibbs free energy function. In case of more than one constraint vio-
lation, all constraint violations are first multiplied with the penalty
weight, and all of them are added to the objective function value.
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Specifically, the penalty function is given by

F1 =
{

FG if ∀nij > 0 i = 1, . . . , c; j = 1, . . . , �,

FG + p otherwise,
(22)

where p is the penalty term whose value is positive. For phase equi-
librium calculations, infeasible solutions (i.e., ni� < 0) imply that the
Gibbs free energy function of phase � cannot be determined due to
the logarithmic terms of the activity or fugacity coefficients. Taking
into account the inequality constraints ni� > 0, the penalty term is
defined as

p = 10 ·
nunf∑
i=1

|ni�| (23)

where ni� is obtained from Eq. (21) and nunf is the number of infea-
sible mole fractions (i.e., ni� < 0 where i = 1, . . ., c − r). This penalty
term is straightforward and preliminary calculations indicate that
its value is appropriate for handling infeasible solutions in the
constrained Gibbs free energy minimization in systems subject to
chemical reactions.

2.3. Unconstrained minimization approach

Alternatively, Gibbs free energy function can be written in terms
of reaction-invariant composition variables n̂ij to transform the
problem into an unconstrained form. Specifically, to perform an
unconstrained minimization of F2 = �ĝ (Eq. (10)), we can use a set
of new variables, namely, ˇij as decision variables. The introduction
of these variables eliminates the restrictions imposed by material
balances, reduces problem dimensionality, and the optimization
problem is transformed into an unconstrained one [19,26–28].
However, this will require the solution of nonlinear equations for
evaluating the objective function due to the transformation proce-
dure X → x using Eqs. (5) and (6).

For multi-phase reactive systems, real variables ˇij ∈ (0, 1) are
defined and employed as decision variables by using the following
expressions

n̂i1 = ˇi1Zin̂F i = 1, . . . , c − r (24)

n̂ij = ˇij

(
Zin̂F −

j−1∑
m=1

n̂im

)
i = 1, . . . , c − r; j = 2, . . . , � − 1

(25)

n̂i� = Zin̂F −
�−1∑
j=1

n̂ij i = 1, . . . , c − r (26)

Using this formulation, equality constraints, Eqs. (8) and (9) are
eliminated and all trial transformed compositions satisfy the
material balances allowing the easy application of optimization
strategies. For the unconstrained minimization of �ĝ, Eq. (10),
the overall number of decision variables (i.e., ˇij) is (c − r) (� − 1).
Finally, it is important to note that the global optima of F1 and
F2 are equal but their decision variables are different (nij and ˇij,
respectively).

3. Description of stochastic optimization methods

In this study, we used three methods: SA, GA and DETL for
the global minimization of constrained and unconstrained Gibbs
free energy functions using both conventional (i.e., constrained
minimization approach) and transformed composition variables
(i.e., unconstrained minimization approach). SA has recently been

used for reactive systems in [19,25], whereas DETL and GA have
not yet been tried for phase equilibrium calculations in reactive
systems. SA is a point-to-point method while GA and DETL are
population-based methods. These algorithms are described briefly
in the following subsections, and their detailed description and
flowcharts is available in the cited References

3.1. Simulated annealing

SA is a stochastic method that mimics the thermodynamic pro-
cess of cooling molten metals to attain the lowest free energy
state [34]. In the minimization problems, this algorithm performs a
stochastic search of the space defined for decision variables where
uphill moves may be accepted with a probability controlled by
the parameter called annealing temperature: TSA. The probabil-
ity of acceptance of uphill moves decreases as TSA decreases. At
high TSA, the search is almost random, while at low TSA the search
becomes selective where good moves are favored. The core of SA
algorithm is the Metropolis criterion [35] used to accept or reject
uphill movements with the acceptance probability given by

M(TSA) = min
{

1, exp
(−�f

TSA

)}
(27)

where �f is the change in objective function value from the current
point to new/trial point.

In this study, the SA algorithm proposed by Corana et al. [36] has
been used because of its good performance in thermodynamic cal-
culations, e.g., [19,26,37]. In this algorithm, a trial point is randomly
chosen within the step length VM (which is a vector of length nvar)
from the current point. The objective function is evaluated at this
trial point, and its value is compared to the objective value at the
current point. Eq. (27) is used to accept or reject the trial point. If this
trial point is accepted, the algorithm continues the search using that
point; otherwise, another trial point is generated within the neigh-
borhood of the current point. Each element of VM is periodically
adjusted so that half of all function evaluations in that direction
are accepted. A fall in TSA, after NT × NS × nvar function evaluations,
is imposed upon the system using the cooling schedule. Note that
NT is the number of iterations before TSA reduction and NS is the
number of cycles for updating the decision variables.

In our calculations, cooling schedule for decreasing TSA is defined
as

TSA,k = 0.5(TSA,0 − TSA,F )
(

1 − tanh
(

17k

Itermax
− 5
))

+ TSA,F (28)

where Itermax is the maximum number of iterations for SA, TSA,k
is the annealing temperature at iteration k, and TSA,0 and TSA,F are
respectively the initial and final values of the annealing temper-
ature. Thus, as TSA declines, downhill moves are less likely to be
accepted and SA focuses on the most promising area for optimiza-
tion. The iterative steps are performed until the specified stopping
criterion: either the maximum number of successive iterations
(Scmax) without improvement in the best function value, or until
the maximum number of iterations (Itermax), is satisfied. The main
parameters of SA are TSA,0, TSA,F, NS, NT, Scmax and Itermax. Detailed
description of this algorithm can be found in Corana et al. [36]. We
have used, after suitable modifications, the subroutine developed
by Goffe et al. [38], for the present study.

3.2. Genetic algorithm

GA is a stochastic technique that simulates natural evolution
on the solution space of the optimization problem. It operates on
a population of potential solutions (individuals) in each iteration
(i.e., generation). Specifically, the first step of GA is to create ran-
domly an initial population of NP solutions in the feasible region. GA
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works on this population, and combines (crossover) and modifies
(mutation) some chromosomes according to specified genetic oper-
ations, to generate a new population with better characteristics.
Individuals for reproduction are selected based on their objective
function values and the Darwinian principle of the survival of the
fittest [39].

Genetic operators are used to create new individuals for the next
population from the selected individuals of the current population,
and they serve as the searching mechanisms in GA. In particular,
crossover forms two new individuals by first choosing two indi-
viduals from the mating pool (containing the selected individuals)
and then swapping different parts of genetic information between
them. This combining (crossover) operation takes place with a user-
defined crossover probability (Pcros) so that some parents remain
unchanged even if they are chosen for reproduction. Mutation is
an unary operator that creates a new solution by a random change
in an individual with a probability Pmut. It ensures that the prob-
ability of searching any given string will never be zero and acting
as a safety net to recover good genetic material which may be lost
through the action of selection and crossover.

Selection, crossover and mutation procedures are recursively
used to improve the population and to identify promising areas
for optimization. GA terminates when the user-specified crite-
rion is satisfied. For comparison purposes, the stopping conditions
described for SA have been implemented in all stochastic meth-
ods tested in this work. Specifically, GA stops after evolving for
the specified number of generations (Genmax), or until performing
the maximum number of successive generations (Scmax) without
improvement in the best objective value. We have used GA with
floating-point encoding, selection via stochastic universal sam-
pling, modified arithmetic crossover and non-uniform mutation.
Details of this algorithm are available in Rangaiah [26]. The key
parameters of GA are NP, Pcros, Pmut, Genmax and Scmax.

3.3. Differential evolution with tabu list

This recent stochastic method developed by Srinivas and Ran-
gaiah [28] is a hybrid strategy obtained from differential evolution
(DE) and tabu search (TS). DETL begins with the selection of val-
ues for parameters: population size (NP), amplification factor (A),
crossover constant (CR), tabu radius (tr), tabu list size (tls), Genmax

and Scmax. The algorithm generates the initial population of size NP
using uniformly distributed random numbers to cover the entire
feasible region. The objective function is evaluated at each individ-
ual/point, and the best one is selected. The tabu concept of TS is
implemented in the generation step of DE (i.e., after crossover and
mutation) to improve the diversity among the individuals and con-
sequently the computational efficiency. It employs a tabu list with
the parameters: tr and tls, to keep track of the evaluated points for
avoiding revisits to them during the subsequent search.

The three main steps: mutation, crossover and selection of DE
along with tabu checking are performed on the population during
each generation. For this, a mutant individual is generated for each
randomly chosen target individual (Xi,j) in the population by

Vi,G+1 = XR1,G + A(XR2,G − XR3,G) i = 1, 2, 3, . . . , NP (29)

where random numbers R1, R2 and R3 are distinct and belong to the
set {1, 2, 3, . . ., NP}, and XR1,G, XR2,G and XR3,G represent the three
random individuals chosen from the current generation, to produce
the mutant vector for the next generation, Vi,G+1. The random num-
bers should be different from the running index, i, and hence NP
should be ≥4 to allow mutation. Parameter A is a real value between
0 and 2, and it controls the amplification of the differential variation
between the two random individuals.

In the crossover step, a trial individual/vector is generated by
copying some elements of the mutant individual to the target

individual with a probability of CR. A boundary violation check is
performed to check the feasibility of the resulting trial individual;
if any bound is violated, the trial individual is replaced by generat-
ing a new individual. The trial individual is then compared to the
already evaluated points in the tabu list in terms of the Euclidean
distance. If the Euclidean distance is smaller than the tabu radius,
which indicates that the objective function value at the trial vector
and at one of the points in the tabu list are comparable, the trial
individual is rejected as it may not give new information about the
objective function except increasing the number of function eval-
uations. The rejected point is replaced by generating another trial
point by mutation and crossover operations, until the Euclidean
distance between the new point and each of the points in the tabu
list is greater than the tabu radius. Whenever a trial individual is
rejected, the number of rejected individuals (Nfail) at the current
generation is updated.

The objective function is evaluated at the trial individual only if
it is away from all the points in the tabu list and if Nfail < 15nvar. In
this algorithm, the parameter Nfail is used to avoid indefinite cycling
in the generation step. After each evaluation, the tabu list is updated
dynamically to keep the latest point(s) in the list by replacing the
earliest entered point(s). In the selection step, objective function
value is used to select the better one between the trial and target
individuals. If the trial individual is selected, it replaces the tar-
get individual in the population immediately and may participate
in the subsequent mutation and crossover operations. If the tar-
get individual is better, then it remains in the population and may
participate in the subsequent mutation and crossover operations.
The algorithm runs until the stopping criterion (Genmax or Scmax)
is satisfied, and gives the best point obtained over all the genera-
tions. More details on DETL algorithm can be found in Srinivas and
Rangaiah [28].

3.4. Implementation of the methods

In the present study, FORTRAN codes developed for the three
stochastic algorithms were used. All codes are available to inter-
ested readers upon request to the corresponding author. Each
method has been implemented in combination with a local opti-
mization technique at the end of global search. Specifically, the
best point identified by the stochastic algorithm is used as the
initial guess for local optimization. This is because stochastic opti-
mization methods may require a significant computational effort
to improve the accuracy of the solution since they explore the
search space by creating random movements instead of using
a logical optimization trajectory. Therefore, intensification step
using a local optimizer is needed for rapid convergence and for
improving accuracy of the best solution obtained with a stochastic
method.

In this study, performance of SA, DETL and GA is tested for
constrained and unconstrained Gibbs free energy minimization
with and without local optimization. The quasi-Newton method
implemented in the subroutine DBCONF of IMSL library was used
for local optimization. This subroutine calculates the gradient via
finite differences and approximates the Hessian matrix according
to BFGS formula. For more details on this local strategy, see the
book by Dennis and Schnabel [40]. The default values of DBCONF
parameters in the IMSL library were employed. Preliminary cal-
culations indicate that these parameter settings are a reasonable
compromise between numerical effort and reliability for intensifi-
cation stage. All calculations were performed on a HP Workstation
with Dual-Core AMD Opteron 2.19 GHz processor with 1.87 GB of
RAM. This computer performs 254 million floating point opera-
tions per second for the LINPACK benchmark program (available
at http://www.netlib.org/) for a matrix of order 500.
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Table 1
Examples selected for the constrained and unconstrained Gibbs free energy minimization in reactive systems.

No. System Feed conditions Thermodynamic models Ref.

1 A1 + A2 ↔ A3 + A4

(1) Ethanol
(2) Acetic acid
(3) Ethyl acetate
(4) Water

nF = (0.5, 0.5, 0.0, 0.0) at 355 K and
101.325 kPa

NRTL model and ideal gas.
Keq,1 = 18.670951

[2,11,14]

2 A1 + A2 ↔ A3, and A4 as an inert
component
(1) Isobutene
(2) Methanol
(3) Methyl ter-butyl ether
(4) n-Butane

nF = (0.3, 0.3, 0.0, 0.4) at 373.15 K
and 1013.25 kPa

Wilson model and ideal gas.
�G0

rxs
R = −4205.05 + 10.0982T − 0.2667T ln T

ln Keq,1 = −�G0
rxs

RT where T is in K.

[41]

3 A1 + A2 + 2A3 ↔ 2A4

(1) 2-Methyl-1-butene
(2) 2-Methyl-2-butene
(3) Methanol
(4) Tert-amyl methyl ether

nF = (0.354, 0.183, 0.463, 0.0) at
335 K and 151.95 kPa

Wilson model and ideal gas.
Keq,1 = 1.057 · 10−04e4273.5/T where T is in K.

[19]

4 A1 + A2 ↔ A3 + A4

(1) Acetic acid
(2) n-Butanol
(3) Water
(4) n-Butyl acetate

nF = (0.3, 0.4, 0.3, 0.0) at 298.15 K
and 101.325 kPa

UNIQUAC model.
ln Keq,1 = 450

T + 0.8 where T is in K.
[15,43]

5 A1 + A2 ↔ A3 nF = (0.6, 0.4, 0.0) Margules solution model.
gE

Rg T = 3.6x1x2 + 2.4x1x3 + 2.3x2x3

Keq,1 = 0.9825

[42]

6 A1 + A2 + 2A3 ↔ 2A4 with A5 as inert
component
(1) 2-Methyl-1-butene
(2) 2-Methyl-2-butene
(3) Methanol
(4) Tert-amyl methyl ether
(5) n-Pentane

nF = (0.1, 0.15, 0.7, 0.0, 0.05) at
335 K and 151.9875 kPa

Wilson model and ideal gas.
Keq,1 = 1.057 · 10−04e4273.5/T where T is in K.

[19]

7 A1 + A2 ↔ A3 nF = (0.52, 0.48, 0.0) at 323.15 K and
101.325 kPa

Margules solution model.
Keq,1 = 3.5

[4]

8 A1 + A2 ↔ A3 + A4 nF = (0.048, 0.5, 0.452, 0.0) at 360 K
and 101.325 kPa

NRTL model.
Keq,1 = 4.0

[43]

Table 2
Problem formulation for the constrained and unconstrained Gibbs free energy minimization in selected reactive systems.

No. Constrained optimization Unconstrained optimization

F1
a nvar Decision variables F2

b Reference component nvar Decision variables

1, 4, 8 �g − (n4,1 + n4,2) ln Keq,1 5 ni,1 for i = 1, . . ., 4 and n4,2 �ĝ A4 3 ˇi,1 for i = 1, 2, 3
2 �g − (n3,1 + n3,2) ln Keq,1 5 ni,1 for i = 1, . . ., 4 and n3,2 �ĝ A3 3 ˇi,1 for i = 1, 2, 4
3 �g − 0.5(n4,1 + n4,2) ln Keq,1 5 ni,1 for i = 1, . . ., 4 and n4,2 �ĝ A4 3 ˇi,1 for i = 1, 2, 3
5, 7 �g − (n3,1 + n3,2) ln Keq,1 4 ni,1 for i = 1, . . ., 3 and n3,2 �ĝ A3 2 ˇi,1 for i = 1, 2
6 �g − 0.5(n4,1 + n4,2) ln Keq,1 6 ni,1 for i = 1, . . ., 5 and n4,2 �ĝ A4 4 ˇi,1 for i = 1, 2, 3, 5

a Where �g =
∑c

i=1
(ni,1 ln(xi,1�i,1) + ni,2 ln(xi,2P/Pi,sat)) for VLE and �g =

∑c

i=1
(ni,1 ln(xi,1�i.1) + ni,2 ln(xi,2�i,2)) for LLE.

b Where �ĝ =
∑c−r

i=1
(n̂i,1 ln(xi,1�i,1) + n̂i,2 ln(xi,2P/Pi,sat )) for VLE and �ĝ =

∑c−r

i=1
(n̂i,1 ln(xi,1�i.1) + n̂i,2 ln(xi,2�i,2)) for LLE.

4. Results and discussion

4.1. Description of reactive phase equilibrium problems

We have tested and compared the performance of SA, GA
and DETL using a number of reactive systems and different ther-
modynamic models. The test problems include systems with
vapor–liquid (VL) and liquid–liquid (LL) equilibrium. Details (i.e.,
feed conditions, thermodynamic models, objective function, deci-
sion variables and global optimum) of all examples are reported in
Tables 1–3. Parameters of thermodynamic models for these reac-
tive systems are given in Appendix A. Most of the selected reactive
systems have been used for testing other deterministic and stochas-
tic optimization strategies, e.g., [2,4,11,14,15,18–20,22,23,41–43].
In all examples, the number of phases existing at the equilibrium is
assumed to be known a priori. In general, the selected reactive phase
equilibrium problems have different dimensionality and inherent
difficulties (e.g., discontinuities in objective function for VL equilib-
rium problems, or feed composition near phase boundaries which

are generally challenging for any algorithm). Therefore, we consider
that the number and features of the test problems are sufficient
to demonstrate and compare the performance of SA, GA and DETL
for solving reactive phase equilibriums problems via unconstrained
and constrained approaches.

Table 3
Global minimum of the reactive examples studied.

No. Equilibrium Global minimum of F1 and F2

1 Vapor–Liquid −2.058125
2 Vapor–Liquid −1.434267
3 Vapor–Liquid −1.226367
4 Liquid–Liquid −1.106296
5 Liquid–Liquid −0.144508
6 Vapor–Liquid −0.872577
7 Liquid–Liquid −0.653756
8 Liquid–Liquid −0.311918

Note: Global solutions of all problems can be found in Refs. [2,11,14,15,18,19,23].
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The performance of all stochastic methods is evaluated based
on both reliability (measured in terms of number of times the algo-
rithm located the global minimum out of 100 trials with random
initial values, refereed to as success rate SR) and computational
efficiency (measured in terms of average number of function evalu-
ations NFE and CPU time). Note that NFE includes both the function
calls for evaluating the objective function using the stochastic
method (NFEstc) and the function calls for the local optimization
(NFEqN). The average NFE and CPU time are evaluated using suc-
cessful trials only. A trial is considered successful if the global
optimum is obtained with an absolute error of 10−5 or less in the
objective function value. To compare the performance of stochastic
algorithms and to analyze their relative merits for reactive phase
equilibrium calculations, we have considered Eqs. (10) and (22) as
the objective function for unconstrained and constrained Gibbs free
energy minimization, respectively.

4.2. Parameter tuning of SA, GA and DETL

Reactive examples 1 and 4 have been used to establish the most
suitable parameter values for solving the constrained and uncon-
strained Gibbs free energy minimization problems efficiently and
reliably. Parameter tuning was carried out by varying one param-
eter at a time with the remaining parameters fixed at nominal
values, which were established using the reported results in the
literature [19,26,28]. The tested and suggested values for param-
eters of each stochastic method are summarized in Table 4. Our
preliminary calculations suggest that these parameter values are a
reasonable compromise between numerical effort and reliability of
tested stochastic methods.

4.3. Performance of SA, GA and DETL

The three stochastic methods were studied using two stopping
criteria: (a) maximum number of iterations/generations Itermax or
Genmax (referred to as stopping criterion 1, SC1) and (b) maximum

Table 4
Tested and suggested values of parameters in the stochastic optimization methods
for the constrained and unconstrained Gibbs free energy minimization in reactive
systems.

Method Parametera Tested values Suggested values

SA TSA,0 0.1–1000 10
TSA,F 10−9–10−3 10−6

GA Pcros 0.5–0.9 0.9
Pmut 0.001–0.5 0.1

DETL CR 0.1–0.9 0.9
A 0.1–0.9 0.3
tr 0.001nvar–0.01nvar 0.001nvar

tls 50–75 50

a NS × NT (=NP) = 10nvar where nvar is the number of decision variables for the
Gibbs free energy minimization problems.

number of iterations/generations without improvement in the best
function value Scmax (referred to as stopping criterion 2, SC2). The
methods are compared in terms of SR and NFE by examining differ-
ent levels of algorithm efficiency, which are obtained by changing
the values of Itermax/Genmax and Scmax. Note that optimal values
of these parameters may be problem dependent, and they also
determine the trade-off between efficiency and reliability. As a con-
sequence, selection of proper values for them is important for the
comparison. For all calculations performed in this study, NS × NT
(=NP) = 10nvar where nvar is the number of decision variables used
in reactive phase equilibrium calculations.

The performance of SA, DETL and GA implemented with and
without the local optimization method is given in Figs. 1 and 2. For
the sake of brevity, algorithm reliability results are summarized as
the global success rate (GSR), defined as the average successes rate
on the collection of reactive phase equilibrium problems tested:

GSR = 1
Nprob

Nprob∑
i=1

SRi (30)

where SRi is the success rate on the ith problem.
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Fig. 1. Global success rate (GSR) versus Itermax/Genmax (without using Scmax) of SA, DETL and GA for the (a) constrained and (b) unconstrained Gibbs free energy minimization
in reactive systems. Algorithm parameters: NS × NT = NP = 10nvar .
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Fig. 2. Global success rate (GSR) versus Scmax of SA, DETL and GA for the (a) constrained and (b) unconstrained Gibbs free energy minimization in reactive systems. Algorithm
parameters: NS × NT = NP = 10nvar .

Our results indicate that the reliability of SA, DETL and GA
for Gibbs free energy minimization varies significantly with the
stopping condition, the problem formulation (i.e., constrained and
unconstrained), and the use of local optimization method (see
Figs. 1 and 2). In general, DETL and SA can achieve high GSR val-
ues, and their performance is usually better than or comparable to
that of GA using either SC1 or SC2 as the stopping condition, with
and without the quasi-Newton method, in both constrained and
unconstrained minimization approaches. The stochastic methods
may fail to find the global minimum of Gibbs free energy function
using both conventional and transformed composition variables
(see Figs. 1 and 2). These failures may be due to the presence of
local optima and/or flat objective function near the global solution
in some reactive problems.

As expected, the reliability and computational effort of the
stochastic methods increase with Itermax/Genmax and Scmax (see
Figs. 1, 2 and 4 and Tables 5 and 6). Even though the stopping cri-
terion used for all stochastic methods is the same, NFE required by
DETL is generally less than that of both SA and GA because the tabu
checking and the parameter Nfail are implemented in the genera-
tion step of DETL. SR of the methods is affected when the stopping
conditions are limited to low values (i.e., early iterations) espe-
cially for constrained function F1 and without using quasi-Newton
method. Application of local optimization method for the intensifi-
cation stage is important to improve GSR especially in constrained
Gibbs free energy minimization using either SC1 or SC2 as the stop-
ping condition. Without local optimization, SA outperformed the
DETL and GA in solving reactive phase equilibrium problems espe-

Table 5
Percentage reduction in NFE of DETL with local optimization for solving the constrained (F1) and unconstrained (F2) Gibbs free energy problems in reactive systems with SC1
alone as the stopping criterion.

Problem Fobj Percentage reduction in NFE for Itermax or Genmax
a

50 100 250 500 750 1000 1500

1 F1 −1.35 −12.59 −33.15 −50.54 −58.54 −61.98 −67.75
F2 64.38 45.66 11.41 −17.56 −30.90 −36.63 −46.24

2 F1 −6.06 −28.73 −53.68 −65.78 −68.79 −72.06 −74.55
F2 56.52 18.77 −22.81 −42.97 −47.99 −53.43 −57.59

3 F1 −4.86 −18.69 −38.34 −50.62 −56.71 −60.01 −62.94
F2 58.52 35.49 2.75 −17.70 −27.86 −33.36 −38.24

4 F1 1.26 −1.95 −18.14 −35.62 −42.21 −46.39 −52.46
F2 68.73 63.40 36.42 7.30 −3.68 −10.65 −20.77

5 F1 −14.91 −43.33 −65.05 −74.23 −76.96 −80.13 −81.87
F2 70.09 13.30 −30.11 −48.46 −53.92 −60.27 −63.75

6 F1 −1.19 −31.51 −55.39 −67.48 −71.36 −73.70 −76.43
F2 48.18 2.73 −33.09 −51.22 −57.03 −60.55 −64.65

7 F1 −7.05 −28.44 −50.10 −59.73 −65.75 −70.17 −71.24
F2 85.81 43.09 −0.21 −19.46 −31.51 −40.35 −42.48

8 F1 −3.49 −32.84 −56.54 −67.94 −72.49 −74.32 −77.67
F2 60.81 11.92 −27.56 −46.56 −54.15 −56.78 −62.41

a % reduction = 100(NFE of DETL − mean NFE of SA and GA)/(mean NFE of SA and GA). Note that the NFE of SA and GA is comparable.
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Table 6
NFE and SR of SA, DETL and GA with local optimization for solving the constrained (F1) and unconstrained (F2) Gibbs energy minimization problems in reactive systems using
SC2 alone as the stopping criterion.

Problem Scmax NFE (with SR in brackets) fora

Constrained (F1) Unconstrained (Fs)

SA DETL GA SA DETL GA

1 6nvar 5544 (93) 7791 (100) 4650 (89) 1509 (2) 3007 (98) 1396 (1)
12nvar 10,818 (99) 9787 (100) 7866 (98) 2769 (4) 3213 (100) 2470 (2)
24nvar 44,083 (100) 11,548 (100) 13,228 (99) 5760 (2) 3570 (100) 4948 (2)

2 6nvar 4703 (98) 4237 (100) 4465 (99) 1215 (9) 1235 (99) 1295 (6)
12nvar 10,159 (100) 5708 (100) 7363 (100) 2381 (11) 1472 (100) 2224 (14)
24nvar 35,837 (100) 6665 (100) 12,464 (100) 4900 (14) 1833 (100) 4569 (16)

3 6nvar 4740 (95) 6366 (100) 4670 (98) 1530 (7) 2814 (100) 1476 (5)
12nvar 9299 (100) 8017 (100) 7484 (100) 2720 (11) 3181 (100) 2535 (12)
24nvar 32,630 (100) 10,893 (100) 12,680 (100) 4935 (12) 3723 (100) 5041 (13)

4 6nvar 4460 (11) 10,621 (1) 4234 (15) 1266 (7) 2132 (29) 1257 (6)
12nvar 8396 (10) 15,420 (1) 7065 (11) 2354 (12) 2848 (44) 2451 (10)
24nvar 29,589 (11) 22,043 (2) 12,136 (17) 4937 (13) 4330 (40) 4256 (21)

5 6nvar 2401 (71) 2235 (88) 2403 (63) 569 (97) 612 (98) 611 (90)
12nvar 4725 (76) 2705 (86) 4223 (73) 1041 (100) 713 (97) 1078 (95)
24nvar 9508 (79) 3205 (92) 8292 (70) 1947 (100) 869 (98) 1998 (99)

6 6nvar 8038 (99) 4859 (100) 6420 (100) 2368 (3) 1893 (100) 2398 (4)
12nvar 18,759 (100) 5994 (100) 10,708 (100) 4602 (4) 2450 (100) 4320 (4)
24nvar 66,336 (100) 8532 (100) 17,623 (100) 9507 (4) 3084 (100) 7874 (7)

7 6nvar 2690 (56) 3955 (65) 2913 (58) 593 (46) 555 (97) 645 (36)
12nvar 5389 (55) 4985 (77) 4584 (70) 1058 (46) 700 (95) 1142 (51)
24nvar 13,599 (61) 5713 (85) 8257 (90) 1946 (55) 802 (99) 2250 (58)

8 6nvar 5733 (92) 4057 (100) 4906 (95) 1477 (4) 1161 (98) 1515 (4)
12nvar 11,096 (98) 5036 (100) 7777 (98) 2856 (12) 1393 (98) 2548 (5)
24nvar 31,887 (98) 6124 (100) 12,420 (100) 5507 (13) 1852 (100) 4738 (19)

Total NFE 380,416 176,498 188,834 69,749 49,443 65,036

a Itermax/Genmax is restricted to a maximum of 1500; however, this condition was not reached in all calculations performed. Algorithm parameters: NS × NT (=NP) = 10nvar .

cially for F1 (i.e., constrained formulation) and if SC1 is used alone
as the stopping condition (Fig. 1). SR of SA increases with Itermax

and its GSR ranges from 51 to 87% for constrained formulation
using SC1. But, SA showed the best performance (i.e., 100% GSR at
Itermax ≥ 500) using transformed composition variables even with-
out quasi-Newton method. On the other hand, maximum GSR of
DETL is 59 and 94% for constrained and unconstrained problems,
whereas GA showed maximum GSR of 1 and 68% for these problems
using SC1 as the termination criterion (Fig. 1).

In unconstrained Gibbs free energy minimization, DETL and SA
can often find solutions very close to the global optimum even
without applying the local method and using SC1 as the stopping
condition (Fig. 1). In general, value of the best solution obtained by
these methods is nearer to the global minimum as Itermax/Genmax

increases. It is clear that GA without local strategy is the worse
performer for both stopping conditions and problem formulations
(Fig. 1). If SC2 is used as the stopping condition, reliability of DETL
without quasi-Newton method is higher compared to GA and SA
for both constrained and unconstrained functions (Fig. 2). In fact,
DETL offers the best performance and can give high reliability of
GSR ∼= 90%, if proper values of Scmax are used, for Gibbs free energy
minimization employing transformed composition variables (see
results in Fig. 2). SA performed worse than all other stochastic
methods tested for unconstrained problems using SC2 as the stop-
ping condition with and without local optimization. In summary, all
stochastic methods improve its performance with the application
of intensification step in Gibbs free energy minimization using both
conventional and transformed composition variables, irrespective
of the convergence criterion used (i.e., SC1 and SC2). In particu-
lar, the intensification stage using the quasi-Newton method plays
a major role for improving numerical performance of stochastic
methods in constrained approach, while it appears that its use has

less impact for increasing the reliability of stochastic methods in
the unconstrained problems tested.

Usually, it is expected that the performance of the optimiza-
tion methods for solving unconstrained problems is better than
those obtained for constrained problems because the optimization
can be executed without worrying about the feasibility [44]. For
constrained problems, the variance of solutions obtained by the
stochastic method without local optimization may be large. This
is mainly related to the capability of each stochastic method for
searching the feasible region of the total search space. For illustra-
tion, % of the infeasible solutions versus Itermax/Genmax for selected
problems is given in Fig. 3. The infeasible solutions generated at
different levels of computational effort by the stochastic methods,
indicate that DETL is very effective for handling constraints and the
percentage of infeasible solutions decreases from 30 to 5% as the
optimization search progresses. This may be due to the ability of
DE to exploit and intensify the search as iterations increase. It is
interesting to observe that approximately 40% of function evalua-
tions for SA correspond to infeasible solutions and this proportion
practically remains constant throughout the tested range of Itermax.
Although this percentage is higher than those reported for DETL,
SA shows high reliability for constrained problems especially using
SC1 as the convergence criterion. On the other hand, GA fails fre-
quently to identify feasible optimal solutions in the constrained
Gibbs free energy minimization of reactive systems (see Fig. 3).
Other studies have recognized this drawback of GA for solving con-
strained optimization problems [45]. Literature also indicates that
GA performs well in the diversification of the search space but may
fail in the intensification of the solutions found [46]. Overall, the
present results suggest that the diversification mechanisms in DETL
and SA are more effective than those of GA, to escape from the
infeasible region and to locate the global optimum.
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Fig. 3. Infeasible solutions versus Itermax/Genmax (without using Scmax) of SA, DETL
and GA for the constrained Gibbs free energy minimization for selected reac-
tive systems: No. 1 (top plot) and No. 5 (lower plot). Algorithm parameters:
NS × NT = NP = 10nvar .

Comparing the performance of stochastic methods, each fol-
lowed by the quasi-Newton method, all the three methods provide
similar GSR for both SC1 and SC2 using constrained approach (see
Figs. 1 and 2). However, Fig. 1 shows that GSR of SA and DETL
is better than that obtained for GA using SC1 as the stopping
condition, at low iterations. But, as the number of generations
increases, GA can achieve a GSR > 70%. Though GA followed by
the quasi-Newton method showed the worst performance in the
unconstrained approach using SC1, its success rate can be still con-
sidered competitive for several reactive problems if a larger number
of function evaluations is permitted. DETL has good performance
and requires fewer NFE than the other two stochastic methods
using SC1 alone as the stopping criterion for the reactive prob-
lems tested (see Fig. 4 and Table 5). NFE of SA and GA is almost the
same when SC1 is used as the stopping criterion, and the percentage
reduction in NFE of DETL compared to SA and GA for SC1 is summa-
rized in Table 5. The percentage reduction in NFE of DETL ranged
from 1.4 to 81.9% for constrained functions and from 0.2 to 65.0% for
unconstrained problems compared to the other stochastic methods
tested. So, NFE reduction of DETL is more significant for constrained
Gibbs free energy minimization problems. As stated earlier, DETL is
a hybrid strategy that integrates the strong features of DE and TS. In
contrast to SA and GA, DETL can achieve a good tradeoff between the
capabilities to effectively explore the search space and to exploit the
experience accumulated during the optimization. The tabu concept
has considerable influence on the performance of DETL resulting in
lower NFE [28]. However, the improvement in the convergence rate
of DETL may not be the same for all the functions and depends on
problem dimensionality and complexity.

N
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Fig. 4. NFE of SA, DETL and GA each followed by the quasi-Newton method for
solving constrained (top plot) and unconstrained (lower plot) Gibbs free energy
minimization problems in reactive systems using SC1 alone as the stopping cri-
terion. Reactive system: (♦, �) No. 1, (�, �) No. 5, and (©, �) No. 6. Unfilled
symbols are for DETL and filled symbols are for SA and GA. Algorithm parameters:
NS × NT = NP = 10nvar .

If SC2 is used as the convergence criterion (along with
Itermax/Genmax set at 1500 to avoid indefinite looping), the results
indicate that DETL can achieve a higher GSR than those obtained
for GA and SA with and without local optimization and for both
constrained and unconstrained formulations (see Fig. 2). At tested
values of SC2, SA, DETL and GA gave similar GSR for constrained
problems. However, in unconstrained formulation, DETL is the best
performer and can achieve a GSR > 90% with or without local opti-
mization. Also, NFE of DETL is lower than that of SA and GA using
SC2 in both constrained and unconstrained approaches especially
for problems with several decision variables, as shown in Table 6.
For this stopping condition, SA generally required more NFE than
GA and DETL. These results again confirm that the diversity intro-
duced in DETL using TS concept has a significant impact on its
performance.

When we examine the results for individual problems, the three
stochastic methods, each followed by the quasi-Newton method,
show high reliability for reactive problems No. 1–3, 6, and 8, irre-
spective of the stopping criterion used (i.e., Itermax/Genmax or Scmax),
for constrained formulation (results not shown for brevity). In fact,
the global optimum is found even using low values of these stop-
ping conditions. In the case of unconstrained approach, only DETL
showed a high success rate for both SC1 and SC2 in almost all
reactive problems, while the reliability of SA is high for tested
examples and using SC1 only. Further, GA failed to find the global
optimum several times in almost all Gibbs free energy minimiza-
tion problems using transformed composition variables. In general,
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performance of stochastic optimization methods is dependent on
the problem under study and, as a consequence, the numerical
effort for escaping from local minima depends on the problem.
For any global optimization problem, all stochastic methods con-
verge to a global minimum as NFE → ∞ [46]. Therefore, for difficult
constrained and unconstrained optimization problems, the perfor-
mance of all stochastic methods could be improved using larger
Itermax/Genmax (i.e., >1500) or Scmax (i.e., >24nvar) but at the expense
of significant computational effort.

Overall, our results indicate that the reliability of SA, DETL and
GA is better using SC1 compared to that of SC2 for both constrained
and unconstrained problems. This may be because of slow conver-
gence and/or more iterations/generations are required for escaping
from the local minimum region reached in the initial iterations.
However, maximum number of generations/iterations to find the
global optimum cannot be judged a priori for an arbitrary func-
tion. In some problems, this may lead to unnecessary function calls
when the minimum is reached long before the maximum num-
ber of generations/iterations, thus increasing computational effort.
Therefore, to avoid the premature convergence and reduce compu-
tational effort, it is better to employ both SC1 and SC2 with suitable
values as the stopping conditions (i.e., the algorithm terminates
after satisfying either Itermax/Genmax or Scmax).

In the tests performed on the reactive problems using the con-
strained approach, the CPU time ranged from 0.003 to 0.83 s for
SA, from 0.01 to 0.79 s for DETL, and from 0.005 to 0.98 s for
GA, respectively. Using transformed composition variables (i.e.,
unconstrained approach), these CPU times ranged from 0.04 to
18.6 s for SA, from 0.03 to 3.5 s for DETL, and from 0.05 to 18.9 s
for GA. The computational time of stochastic methods increases
proportionally with the number of decision variables. On aver-
age, there is a 14:1 (for SA), 4:1 (for DETL) and 12:1 (for GA)
ratio between the computational times for minimizing F2 and F1
(i.e., between the application of transformed and conventional
composition variables). As expected, implementation of the uncon-
strained approach using reaction-invariant composition variables
requires larger computing time compared to that for the con-
strained formulation using conventional variables. This is because
the transformation procedure X → x must be performed for each
objective function evaluation, and this procedure requires another
numerical method for determining the composition of reference
components.

In summary, our results indicate that DETL offers the best com-
promise between reliability and efficiency for solving both the
constrained and unconstrained Gibbs free energy minimization in
reactive systems. In particular, the constrained Gibbs free energy
minimization approach (using conventional composition variables)
has the advantage of requiring smaller computing time, is straight-
forward and suitable for modeling systems subject to chemical
reactions.

5. Conclusions

In this work, performance of DETL, GA and SA is studied for Gibbs
free energy minimization in reactive systems using both conven-
tional and transformed composition variables. For both constrained
(involving conventional composition variables) and unconstrained
(involving transformed composition variables) problems, with and
without local optimization, DETL and SA are better than GA in
terms of reliability. However, these stochastic methods may face
difficulties in finding the global minimum for Gibbs free energy
minimization in reactive systems using both transformed and con-
ventional composition variables. The use of local optimization for
intensification stage improves the performance of the stochastic
methods especially for constrained Gibbs free energy minimization.

Our results show that there is a significant increase in the compu-
tational effort for solving the unconstrained formulation caused by
the use of the transformed variables. They also indicate that DETL
offers better reliability and efficiency, and so it is recommended for
both constrained and unconstrained Gibbs free energy minimiza-
tion in reactive systems.

List of symbols
ai activity of component i
A amplification factor
B total number of gram-atoms of element
C number of components
CR crossover constant
d number of gram-atoms of element
e unit vector
fij partial fugacity
f0,ij fugacity of pure component
Fobj objective function
g molar Gibbs free energy of mixing
ĝ transformed molar Gibbs free energy of mixing
G Gibbs free energy function
Ĝ transformed Gibbs free energy function
�Gf Gibbs free energy of formation
�ĝ transformed Gibbs free energy of mixing
�g Gibbs free energy of mixing
Genmax maximum number of generations
Itermax maximum number of iterations
k iteration counter
Keq reaction equilibrium constant
m number of equality constraints
me number of elements
n mole numbers
n̂ transformed mole numbers
ninf number of infeasible solutions
nvar number of decision variables in the optimization problem
N invertible matrix of stoichiometric coefficients of refer-

ence components
Nprob total number of tested problems
NFE number of function evaluations
NP population size in genetic algorithm and differential evo-

lution with tabu list
NS number of cycles of SA for updating decision variables
NT number of iterations before annealing temperature

reduction
p penalty function for constrained optimization
P pressure
Pcros crossover probability
Pmut mutation probability
Psat

i
vapor pressure of pure component i

r number of independent chemical reactions
R universal gas constant
R1, R2, R3 random numbers
Scmax maximum number of successive iterations without

improvement in the best function value
SR success rate of stochastic method
tls tabu list size
T temperature
Tr tabu radius
TSA annealing temperature of simulated annealing
U vector of decision variables
Ui,G+1 trial vector
V vector of stoichiometric coefficients
vi stoichiometric coefficient of component i
Vi,G+1 mutant vector
VM step length vector
x mole fraction



Author's personal copy

132 A. Bonilla-Petriciolet et al. / Fluid Phase Equilibria 300 (2011) 120–134

Xi,G target vector
X transformed mole fraction
z feed mole fraction
Z transformed feed mole fraction
ˇi decision variable for phase stability and equilibrium cal-

culations
�i chemical potential of component i
ϕ̂i fugacity coefficient of component i in the mixture

ϕi fugacity coefficient of pure component i
� i activity coefficient of component i in the mixture
� phase number

Appendix A.

Thermodynamic data and model parameters for all reactive sys-
tems used in this paper are given in Tables A1–A6.

Table A1
Thermodynamic data for Example 1.

Componenta Parameters of pure component � ij in the NRTL model

Ai Bi Ci 1 2 3 4

1 9.95614 1440.52 −60.44 0.0 1.3941 0.6731 −0.2019
2 9.6845 1644.05 −39.63 −1.0182 0.0 0.007 −0.4735
3 9.22298 1238.71 −56.15 0.1652 0.5817 0.0 1.7002
4 10.09171 1668.21 −45.14 2.1715 1.6363 1.9257 0.0

log10 Psat
i

= Ai − Bi
T+Ci

˛ij = 0.3

where Psat
i

in N/m2 and T in K. ln �i =
∑c

j=1
�jiGjixj∑c

j=1
Gjixj

+
c∑

j=1

Gijxj∑c

l=1
Gljxl

(
�ij −
∑c

l=1
�ljGljxl∑c

l=1
Gljxl

)
Gij = exp( − ˛ij� ij)

a 1: ethanol, 2: acetic acid, 3: ethyl acetate, and 4: water.

Table A2
Thermodynamic data for Example 2.

Componenta Parameters of pure component Vi uij in the Wilson model (cal/mol)

Ai Bi Ci 1 2 3 4

1 6.84132 923.201 239.99 93.33 – 169.9953 −60.1022 –
2 8.07372 1578.23 239.382 44.44 2576.8532 – 1483.2478 2283.8726
3 6.87201 1116.825 224.744 118.8 271.5669 −406.3902 – –
4 6.80896 935.86 238.73 100.39 – 382.3429 – –

log10 Psat
i

= Ai − Bi
T+Ci

ln �i = 1 − ln

(
c∑

j=1

xj�ij

)
−

c∑
k=1

(
xk�ki∑c

j=1
xj�kj

)
where Psat

i
in mmHg and T in ◦C �ij = Vj

Vi
exp
( −uij

RT

)
a 1: isobutene, 2: methanol, 3: MTBE, and 4: butane.

Table A3
Thermodynamic data for Examples 3 and 6.

Componenta Parameters of pure component Vi uij in the Wilson model (J/mol)

Ai Bi Ci Di 1 2 3 4 5

1 74.527 −5232.2 −8.1482 8.474E−06 0.10868 – 478.8 1376.5 −611.75 326.74
2 82.614 −5586.1 −9.4429 1.0858E−05 0.10671 −477.94 – 968.81 −386.04 362.28
3 23.5347 −3661.468 −32.77 0.04069 9772.3 10147 – 4826.3 11,749
4 20.9441 −2936.223 −47.70385 0.13345 951.33 712.33 −177 – 1143.9
5 81.624 −5578.5 −9.2354 9.4522E−06 0.11613 −194.18 −265.49 1946.7 −447.84 –

ln Psat
i

= Ai + Bi
T + Ci ln T + DiT2 for i = 1,2,5 ln �i = 1 − ln

(
c∑

j=1

xj�ij

)
−

c∑
k=1

(
xk�ki∑c

j=1
xj�kj

)
ln Psat

i
= Ai + Bi

T+Ci
for i = 3,4 �ij = Vj

Vi
exp
( −uij

RT

)
where Psat

i
in Pa and T in K.

a 1: 2-methyl-1-butene, 2: 2-methyl-2-butene, 3: methanol, 4: TAME, and 5: n-pentane.
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Table A4
Thermodynamic data for Example 4.

Componenta Q Ru uij in the UNIQUAC model (cal/mol)

1 2 3 4

1 2.072 2.2024 – −131.7686 −343.593 −298.4344
2 3.052 3.4543 148.2833 – 68.0083 82.5336
3 1.4 0.92 527.9269 581.1471 – 394.2396
4 4.196 4.8724 712.2349 24.6386 756.4163 –

ln �i = ln �E
i

+ ln �R
i

ln �E
i

= ln 	i
xi

+ 5Qi ln 	i
xi

+ li − 	i
xi

c∑
j=1

xjlj ln �R
i

= Qi

(
1 − ln

(
c∑

j=1


j�ji

)
−

c∑
j=1

(

j�ji∑c

l=1

l�li

))

i = Qixi∑c

j=1
Qjxj

	i = Ru,ixi∑c

j=1
Ru,jxj

li = 5(Ru,i − Qi) − (Ru,i − 1)

�ij = exp
( −uij

RT

)
a 1: acetic acid, 2: n-butanol, 3: water, and 4: n-butyl acetate.

Table A5
Thermodynamic data for Example 7.

Component Aij in the Margules solution model (K)

1 2 3

1 0.0 478.6 1074.484
2 478.6 0.0 626.9
3 1074.484 626.9 0.0

T ln �k = 1
2

c∑
i=1

c∑
j=1

(Aik + Ajk − Aij)xixj

Table A6
Thermodynamic data for Example 8.

Component uij in the NRTL model (cal/mol) ˛ij

1 2 3 4 1 2 3 4

1 0.0 1850.2001 79.4397 −327.5173 – 0.3 0.3006 0.3044
2 −80.4396 0.0 667.4489 −219.7238 0.3 – 0.2564 0.2997
3 369.0624 3280.604 0.0 −484.8901 0.3006 0.2564 – 0.3
4 256.8999 842.6079 1126.4792 0.0 0.3044 0.2997 0.3 –

ln �i =
∑c

j=1
�jiGjixj∑c

j=1
Gjixj

+
c∑

j=1

Gijxj∑c

l=1
Gljxl

(
�ij −
∑c

l=1
�ljGljxl∑c

l=1
Gljxl

)
Gij = exp(−˛ij�ij) �ij = uij

RT
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